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ABSTRACT 

For factors of a Gaussian automorphism T determined by compact sub- 

groups of the group of unitary operators acting on L 2 of the spectral 

measure of T, we prove that  the maximal spectral multiplicity is either 1 

or infinity. As an application, we show that  the maximal multiplicity of 

those factors in all LP, 1 < p < -}-co, is the same. 

I n t r o d u c t i o n  

The theory of Gaussian automorphisms is one of, now classical, parts in ergodic 

theory (see [1]), being also a rich source or a tool of constructing interesting 

examples (e.g. [10], [11], [13], [14]). In contrast to that, very little seems to 

be known about the factors of Gaussian automorphisms. Only recently, J.-P. 

* Research partly supported by KBN grant 21110 91 01. 
Received November 13, 1994 

307 



308 M. LEMAI~CZYK AND J. DE SAM LAZARO Isr. J. Math. 

Thouvenot (during the conference in Podebrady 1994) showed that the Gaussian 

automophisms (and hence their factors) are disjoint from the class of automor- 

phisms with minimal self-joinings. 

In this paper, we make first steps in the study of factors of Gaussian auto- 

morphisms. We will deal with those determined by certain compact subgroups 

coming from the centralizer of the first chaos of L2(X, #). Our spectral analysis 

will allow us to extend the classical resul t -- themult ipl ici ty  function is either 1 

or is unbounded-- to  this family of factors (our proof is based on slightly modi- 

fied ideas of the classical case). We would like to mention that for zero entropy 

Gaussian automorphisms (which is the only relevant case for the spectral anal- 

ysis) there are no examples known of factor algebras which are not of the type 

that  is described in our paper. Some measure-theoretic properties seem to re- 

semble those of Gaussian automorphisms (embeddability in measurable flows, 

isomorphism of T and its inverse). 

Given T: (X, B, #) ~ (X, B, #) we consider the corresponding isometries UT 
on each LP(X, p), 1 < p < +co. Thouvenot asked how the (possibly infinite) 

number 
Kp = inf{j _> 1: ( 3 f l , . . .  , f j e  LP(X,#)) 

span{fkTS: k = 1 , . . .  , j ,  s �9 Z} = LP(X, p)} 

varies with p. Iwanik in [5], [6] showed that for each T with positive entropy and 

p > 1, Kp = +co. In [7], it has been proved that for a Gaussian automorphism 

t (  m = h'p: for each pl, p2 > 1. 

As an application of our spectral analysis of compact first chaos factors, we extend 

this result to these factors. The authors would like to thank A. Iwanik for helpful 

discussions. 

The paper was written when the second author was visiting University of Rouen 

in March-June 1994. 

1. Prel iminaries  

Let T: (X, B,/~) -----* (X, B, #) be an ergodic automorphism of a standard Borel 

space. By a f a c to r  of T we mean a T-invariant a-algebra ,4 (more presisely, a 

factor of T is the quotient action of T on (X/,,,, A, #), where for x, y C X, x 

y if they cannot be distinguished by the sets of .4). By C(T) we denote the 
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centralizer of T, i.e. 

C(T) = {S: (X,B,~)  ---* (X,B,~):  ST = TS}. 

In this paper only S invertible will be considered. There is a natural topology 

(called the weak  topo logy)  on C(T) given by 

Sn ~ S if (VA E B) #(S~IAAS-1A)  + #(SnAASA) , O. 

T is said to  be  e m b e d d a b l e  in a m e a s u r a b l e  flow if there exists an action 

(Tt)te~ on (Y, E, v) such that  the map 

R • X ~ ( t ,x )  ~ T :  e X 

is measurable and T is isomorphic to T1. In this case (by identifying T and T1), 

we find that  {Tt: t E R} C C(T). By WC(T) we mean the closure (in the weak 

topology) of the set of all powers of T. 

If 7 9 C C(T) then it determines a factor A(79) of T by the formula 

A(79) = {B e U: (vS �9 7") S B  = B} .  

On the other hand, if A c B is a factor then it induces a subgroup 79(A) of C(T), 

7 9 ( A ) = { S � 9 1 4 9  S B =  B}. 

In the case when 79 is a compact subgroup of C(T) we obtain (see [8], [15]) 

(1) 79(.4(79)) ---- 79 

and moreover T is a compact group extension of A(79). 

Let UT: L2(X, #) ----* L2(X, #) be the associated unitary operator, Urf  = fT .  

Call a I the Borel measure on T given by 

= fv zn doff(z) -- (U~f, f )  ~'f(n) 

the spec t r a l  m e a s u r e  of f .  There exists f �9 L 2(X, p) such that  af dominates 

all other spectral measures; aT, the equivalence class of a:, is called the m a x i m a l  

spec t r a l  t y p e  of T. Up to spectral equivalence, UT is described by crT and a 

function 

MT: T ~ {1, 2 , . . . ,  +oo}, 
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defined fiT a.e., called the mul t ip l i c i ty  f u n c t i o n  ofT;  its essential supremum is 

said to be the m a x i m a l  s p e c t r a l  mul t ip l i c i ty  (see e.g. [12] for further details). 

If :P c C(T) is a compact subgroup then 

(2) L~(A(P)) = {f  E L2(X,p): f S =  f ( V S � 9  

In general, the maximal spectral type of T on A(P) is absolutely continuous with 

respect to (7 T and the multiplicity function is not bigger than MT. 

2. F a c to r s  g iven  by  c o m p a c t  s u b g r o u p s  of  t h e  cen t r a l i z e r  o f  t h e  f i rs t  

c h a o s  

Put  X = ~z,  B the a-algebra of Borel sets and let T: X , X, 

(Tx)n = xn+l, n E Z. 

Let ~r(s) denote the projection onto the s-th coordinate. 

A probability measure # on B is said to be a G au s s i an  measure if 

(i) ( V s e Z )  fx~r(s) d#=O, 
(ii) (Vn, sl,  s2 e Z) f x  r(Sl)~r(s2) d# = f x  ~r(sl + n)Tr(s2 + n) dp, 
(iii) (Vsl < . . .  < s~ E Z) (~r(sl) , . . . ,  r(s~)) is an r-dimensional Gaussian vector, 

i.e. 

u ( { x  e x :  e e c , . } )  = 

c p(tl , . . . , t~)dtl. . .dt~, 
1 X...XCr 

where 

p(tl , . . .  ,t~) = const- e -�89 t = ( t l , . . .  , tr)  

and D = [dij], with d,j = fx  r(s,)~r(sj) d#. 
Let a be the spectral measure of the Gaussian automorphism T: (X, B, #) 

(X, B, #), i.e. a symmetric measure on the circle given by 

b(n) = ~ z'~ da(z) = / x  ~(n)~r(O) d# = / x  fT'~ f d#, n c Z, 

where f(x) = ~r(0)(x). Throughout, a is assumed to be continuous (equiva- 

lently, T = To is ergodic). We will use certain well-known spectral properties of 
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Gaussian automorphisms; the corresponding proofs can be found in [1]. There 

exists a decomposition of L 2 (X, #) into 

o o  

L2(x,.)  = G n ( :  ), 
n : O  

where Ul  ~ denotes the subspace of constant functions and U (n) -- U (n) + iU (n) 

with 7-/(n) a real T-invariant space. We have 

~-{r (1) ---- span{zr(s): s �9 Z} -- span{~r(0)TS: s �9 Z}. 

The spaces ?_/(n), n > 1 are called the n-th h o m o g e n e o u s  chaos  of T. Moreover, 

UT: ?-I (n) , ~(n) is isomorphic to 

V :  L2ym(, .~,n ,an)  ___~ " 2 Lsym (Tn, an) ,  

V F ( z I , . . . , Z n )  = Zl " . . . "  z n F ( z i  . . . .  , Z n ) ,  

where Ls2ym(']['~, an) is the subspace of L 2 (T ~, an) of functions invariant under the 

coordinate action on T ~ of the group Sn of permutations and an = a x . . .  • a. 
n 

We have 

(3) the maximal spectral type of T on 7-/(n) is equal to a (n) = F * "'" * a .  
Y 

n 

PROPOSITION 1: 

(i) For each (real) unitary operator U: 7-I (1) ~ 7-/(1) there exists a unique 

automorphism S: (X, B, #) ~ (X, B, #) such that 

usln(  1) : u. 

(ii) / f  in addition UUT = UTU then S C C(T). 

Proof: Let Yn = UTr(n),n E Z. The covariances (Yn, Ym) are equal to 

(Tr(n), 7r(rn)) and (Yn) is a Gaussian process (since all Yn E ~.~(1) and ~_~(1) consis ts  

solely of Gaussians elements), therefore the two processes are equal in law, i.e. 

#({x �9 X: (zr(nl)(x),..., 7r(nk)(x)) �9 A}) 
(4) 

= #({x �9 X: (Vnl (x) , . . . ,  Ynk (x)) �9 A}). 

Moreover, the smallest a-algebra generated by 

{Yn--l(c):  n E Z, C a Borel subset of R} 
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is equal to B. If we now let 

Isr. J. Math. 

Suppose that  S: (X, B, #) 

i f y l , . . . , y n  E ~(1) then 

(5) : y l S ' . . . ' y n S  :=: Yl �9 . . - 'Yn : S, 

where : Yl �9 .. Yn : denotes the corresponding Hermite-It6 polynomial of Gaussian 

variables Yl , . . . ,  yn. Put 

Q(m) = {F E L2(T TM, am): F is invariant under 

s ~  and F ( ~ , . . . , ~ )  = F(z l , . . . , z~ ) } .  

Let V F ( z l , . . . ,  zm) = z l . . .  zmF(z l , . . . ,  Zm). We then have an isomorphism 

O(m): Q(m, --~ n(m) 

of V and T given by 

0 (m) Sym(z~l . . . z  = :  ~r(sk):, S l , . . . , SmEZ,  
k=l  

where Sym(F)(zx,. . . ,  zm) = ~,es,~ F(zTo),. . . ,  zT(m)) (~(m) is generated by 

the polynomials : I-[k~__l zr(sk) :). 

N n LEMMA 1: Let p(z) = E n = - N  anZ (an E R). Then 

: I I  zr(sk)(p(T)):= 0 (~) (Zl). . .p(zm) Sym(z~l . . .  z~ ~) . 
k=l 

) (X, ]3, ~), S E C(T) a n d  Vs(~-~(r 1)) C ~'~(r 1) �9 T h u s  

s ( , )  = ( . . . ,  Zo(x), Zl(x), . . . )  

then (4) says that S preserves # and since UT(U~r(i))(x) = U(z((i + 1))(x), the 

result follows. | 
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Proof." We have 

: I - [  ~ ( s k ) ( p ( T ) )  : = :  a ~ ( s k  + n : 
k= l  k= l  n 

= O ( r  m) '~.Sym(z~lp(zl)...ZSm'~P(Zm))) 
;o m) 

Since S acts on ~(1) and commutes with T, on its isomorphic copy Q(1) it will 

act by the formula 

(6) Sy(z) = g(z)y(z) 

for a unique function g E L2(~?, a) satisfying ]g(z)[ = 1 a-a.s, and g(~) = g(z). 

PROPOSITION 2: Suppose that S E C(T) and Us(7-I (1)) C 7-/(1). Then for each 

m >_ 1, Us(TI (m)) C 7-l (m) and moreover (on Q(m)) it acts by the formula 

SF(z l , . . . ,  zm) = g(Zl ) . . .  ~(zm)F(zl,. . . ,  zm). 

Proof." Let pn = P~ (z) be a sequence of trigonometric polynomials such that  

Pn ~ g in Q(1) (hence p~(T) ~ S strongly on 7-/(~1)). It is enough to show 

that  in Q(m) 

S ( S y m ( z ~ l . . . Z ~ n  m)) = g ( z l ) . . . g ( z m ) S y m ( z ~  1 . . . z  s~). 

In view of (5) and Lemma 1, we have 

: 7r(s~)...~r(sm): S -- lim : 7r(Sl)(p~(T))...~r(Sm)(p~(T)): 
n ------~ oo 

= O ( m ) ( g ( z l ) . . . g ( z m ) ~ . S y m ( z ~ l . . . z ~ ' ~ ) )  

and the result follows. I 
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REMARK 1: On Q(m) = Q(m)+  iQ(m), S will act by the same formula. A 

sufficient condition for every S E C(T)  to preserve 7-/(1) is, for example, 

oo a(n) 

a - l - E  n! 
n = 2  

(indeed, if f E 7/(1) then f S  has the same spectral measure, hence in view of (3), 

f S e ")"~(cl)). 

REMARK 2: If S E C(T)  but S does not preserve ~'{r (1), then the situation is 

more complicated. For example, we have the following result*: 

if f �9 7/r = ~)~=1 7-/(m) is a Gaussian variable 

(7) then either f �9 7t (1) or f = ~-~4~176 f~, fi �9 7/(i) 
with infinitely many fi different from zero. 

Indeed, for all n > 1, for every Y �9 {~)k=0 7/(k) \ t : r , n - 1  ~(k)~ 
- '~ --~u:k=O ,~c : there exists a ,  �9 

P~_ such that  
E[exp(a[Y[2/n)] < +oo for a < a . ,  

E[exp(/3]Y[2/n)] = +oo for/3 > a .  

(cf. for example [9]). Let f be a Gaussian variable with zero mean and variance 

a 2 > 0; then for every n > 1 and every/~ > 0, E[exp(/~[f[2/'~)] is finite. By the 

above result, there is no n > 1 such that f �9 ~k=0  7/(k). 

We also have the following. 

PROPOSITION 3: Let S, Sn: 7/(1) ---+ 7/(1) be unitary operators, S,~f(z) = 

g~(z ) f ( z ) ,  S f ( z )  = g ( z ) f ( z ) .  Then the following statements are equivalent: 
1. Sn , S on 7/(1), 

2. gn ~ g in L2(T, a), 

3. (Vm_>l) g n ( ' ) ' . . . ' g ~ ( ' ) - - - - ~ g ( . ) . . . . . g ( . ) i n L 2 ( T m , a m ) ,  

4. ( V m > l )  S .  , S on T/(m), 

5. S .  ) S in C(T) .  

In particular, 7 ) C U(7/(~ 1)) is compact as a subgroup of unitary operators iff 

the corresponding subgroup of C(T)  of unique extensions of all elements of P is 

compact in the weak topology. 

* The authors would like to thank Prof. M. Yor for his help in obtaining this result. 
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3. Spectral analysis of compact first chaos factors 

Suppose that  "P is a compact subgroup of C(Tll-f(:)). Equivalently, P can be 

identified with a compact subgroup of functions g E L2('IP, a) of modulus one 

(one considers pointwise multiplication as the group operation) satisfying addi- 

tionally g(:) = g(z), where the topology is given by L2(T, a)-convergence. If 

A(P) denotes the corresponding factor then 

L2(A(P)) = { f  �9 L2(X,#): f S  = f (VS �9 P)} = ( ~  7-/(m>(P) 
m = O  

and by our identification 

l_/!m) (p) = Q(m)(p) = {F E Q('~): (Vg E P) 

g(z:) . . .g(zm)F(z: , . . . , z~)  = E ( z l , . . . , z m )  ~,~ a.s.}. 

Example 1: Assume that the constant function -1 belongs to P. Then L 2 (A(P)) 
c ~m~=0 1-/(2m). We claim that if a (2n) _1_ a(2m) whenever n • m then A(P) has 

no Gaussian factor. Indeed, suppose that a Gaussian automorphism Tn with 

spectral measure ~/appears as a factor of A(P). We have that 

~(2) ~](3) ~ O-(2n) 

' + T + ~ + "  << (2n)!" rt=l 

Given n _> 1, let 7 = 7(1)+ 7 (2) with 7 (1) << a (2n) and ~(2) A_ a(2n). There 

must exist n such that  7(n 1) ~ 0. Hence, in I-/(:)(T~) there exists a Gaussian 

element whose spectral measure is equal to 7 (1). By isomorphism we have a one 

in ~/(2n)(To) which is a contradiction to (7). 

Let Am(P) -- { (z : , . . .  ,zm) �9 ,]pm: (Vg �9 P) g(Z:)...g(z,~) = 1}. We have 

(8) Q(m)(p) = {F �9 Q(m).r . . . .  F(z:, ,zm) = 0 V(z: , . . . ,Zm) �9 (Am(p))c}. 

Moreover, 

(9) 

(10) 

(II) 

Am(P) is invariant under the action of Sin, 

A,~:(P) x Am2(P) C Am:+m2(P), 

(3m > 1) Crm(Am(V)) > 0 

(if not then L2(A(T~)) is trivial, hence T is a compact group extension of a one 

point dynamical system which is impossible since T is weakly mixing). 
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Put Pm: ~ ~ T,  p m ( Z l , . . . , Z m )  = Zl . . . Z m .  We obviously have amp~ 1 = 

a (m) for m >_ 1. Disintegrate now am over a (m) to obtain 

am(') = fv vm(-[A) da(m)(A), 

where Vm('[A) are the corresponding conditional measures concentrated on 

p~nl()~). Since am{(Z l , . . . ,Zm ) �9 ~rn: (3i, j )  zi = zj} = 0 (a is continu- 

ous), for a (m) a.e. A �9 T we have that Vm('[A) is concentrated on a number of 

points of p~l(A) which is a multiple (possibly infinite) of m!. This observation 

will still be true if we consider the restriction of Vm('[A) to Am(P)  in view of (9). 

For a Borel set A C ~'~ we put 

~ ( A )  = {A �9 T: vm(A[A) > 0}. 

Notice that  if A C ~'~ has positive am-measure then a (m) ( ~  (A)) is also positive. 

What  is more important: for each Borel set A C T "~ we have 

(12) A C pml(pm(A)) (mod am) 

(indeed, we have 

\ p ~ l ( ~  (A)) = fv vm (A \ p~l ( ~  (A))]A) da (m) (A); (A a m  

if A ~t ~ ( A ) ,  then even vm(A]A) = 0 while if A �9 ~ ( A )  then 

pm(A "-pml(pm(A))[A) = pm(A N pml(A) \ p ~ I ( ~ ( A ) ) [ A )  = 0). 

LEMMA 2: Let A C ~'~ be Bore1 and invariant under Sm. Then the maximal 

spectral type o f  V F (  z l  , . . . , Z m )  ---- Z l  . . . z m F ( Z l  , . . . , Z m )  o n  

{F �9 E ( z l , ,  Zm) = o [ o r  ( Z l , . . .  , Z m )  �9 A c} 
. 4  

is equal to a(m)[~-:.~(A ). 
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Proo~ Denote f(A) = A. Since A C p~l (~(A)) ,  for n e Z, 

(VnF, F) = f z'~.., z,~lF(zl,.. . ,  zm)[ 2 dam(z1,..., Zm ) ,IT m 

~1 (P-'~ (A)) Z 1 . . .  z~nlF(Zl,..., z m ) l  2 dam(Z1,..., Zm) 

= fV,((X~..~(A), fn) o pm(Zl,..., zm)lF(zl, . . . ,  z,~)l 2 dcrm(Zl,... , Zm) 

= fv X~(A)(A)f('~)"E(IFI2IPm)(A) da(m)(A) 

= fr ~nE(IFI21;m)(~) d~(m)l~(~)(~). 
Finally, 

E(XAIPm)(A) = fVm )('A(Zl'''" zm) dvm(Zl,..., zm[A) = .m(AIA) 

and the result follows. | 

From this lemma it is clear that  if there exists a set of positive a (m) measure 

B C T, a('~) (B) > 0 such that  

Um('[A)[Am(p) is not discrete 

for each A E B, then co is an essential value of the multiplicity function of V on 

Q('~) (P).  Indeed, we can make a measurable choice from the fibers p~l(A), A E B 

so that  we obtain 

A1,A2, . . .CAm(P) ,  A i N A j = O ,  um(Ai[A)>O, i , j = l , 2 , . . . ,  A E B  

and moreover Pro(A1) = ~ ( A 2 )  . . . . .  B. 

C O R O L L A R Y  1: The maximal 
o o  Em=O P~z (Am (~P)) m! | 

spectral type of A(7 )) is equal to 

From now on, we assume that  the conditional measures are discrete. Set 

A (m) --- {A E T: um(.[A) is concentrated on pro! points}, 

p = 1 , 2 , . . . , + o o  and let Am,p(P) = p~l(A(m)) Cl Am(P). We have a natural  

part i t ion 

Am,p(P) = Am,p,l (P) U . . . u Am,p,p(P), 
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where 

Am,p,i(P) = {(Zl , . . . ,  Zm) �9 pml(A(p m)) N Am(P):  

v,~ (" IPm (zl,-  �9 zm)) IA,, (P) is concentrated on im! points}. 

THEOREM 1: The set of  essential values or" the multiplicity function M o: V on 

A(m)(v) is equal to {1 < i <_ p: Crm(Am,p,i(P)) > 0}. 

Proof" Let Am,p#,(P), . . . ,Am,p,( ,(P),  il < "'" < i8 be all sets Am,p#(P) with 

positive am measure. There exist disjoint sets B 1 , . . . ,  By, u = i 1 + "  .+i8 of pos- 
U 

itive measure such that  A,~,p('P) = [Jj=l Bj selected in the following way: each 

one of the sets B 1 , . . . ,  Bi~ chooses m! atoms that  differ one from another only by 

a permutat ion on coordinates from each fiber of A,~,p,il (7)) , . - . ,  Am,p#, (:P) and 

we have 

pro(B1) . . . . .  pm(Bi,) = ~ (Am,p (P) ) .  

Then each Bib+l , . .  �9 Bil+~2 choses m! atoms as above from each fiber over 

Am,p,,2 (P),  �9 �9 �9 Am,p,,, (P) 

and we have 

~ ( B i , + I )  . . . . .  ~ ( B i , + i : )  = ~(Am,p, i~(P)  U . . .  U Am,p#,(P)), 

etc. Finally each Bil+.. .+~,_l+l, . . . ,Bil+. . .+is choses rn! atoms as above from 

each fiber over Am,p#s (7 ~) and we have ~(Bi,+.. .+i~_~+x) . . . . .  ~ ( B i ~ - . . . + i , )  

= p'~(A,~,p,i,(P)). Now, for each 1 _< r _< s, the action of V on each of the 

invariant subspaces ,, 

= B c { Y E Q ( c r n ) : Y ( Z l , . . . , Z m )  0 for ( Z l , . . - , Z m )  E (il+...+i.-l+k) }, 

k = 1 , . . . ,  it,  is isomorphic to the multiplication by A on 

{f  e Q(1): f(A) = 0 for A e pm(Am,p,i~(7 ~) U . . .  U Am,p,i,(7~)) c} 

( w i t h  6 r(m) restricted) and the result follows. II 

Before we prove our main result, some auxiliary lemmas will be needed. 

LEMMA 3: I f  #, v are two ~nite measures on the circle then for any two Bore1 

sets A, B C T 
<< (" * 
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where rot C C T • v, ~(c) = {~ e T: p(qA) > o} and 

(u x ~)(.) = f p(-IA) d(u / , t ) ( A ) .  

Proof." First  notice t ha t  similarly as in the case of (12) we get tha t  for u ,  # a . a .  

A E T  

(13) A x B C p21( /~ (A x B))  with respect  to p(.lA). 

Let  C C T be a Borel set such tha t  (u �9 #) [~(A•  = 0. Hence 

(u x #) (p21( /~(A x B) N C))  = 0, 

so for u * # a.a. A E T, p(p~l(ff2(A x B) n C)[A) = 0. In view of (13), for u �9 # 

a.a. A E T, p(A x B np21(C)[A)  = 0 and consequently 

0 = / p ( A  x BnP21(C)lA)d(u.#)(A)  = (u x p)(A x Bnp21(C) )  

= (UlA X #[B)(p~t(C)) = (-IA * l, IB)(C). �9 

LEMMA 4: Let (X, #) f> (Y, 12) g ( Z, ~[) be standard Borel probability spaces 

with the corresponding disintegrations 

.= fv.~d.(y), .= /z.=d~(z), # =  jzf~zdT(z) �9 

(i) We have [Zz(.) = f #y(.)du~(y) for a.a. z E Z. 

(ii) If  $ is a finite group acting on (X, #) and 

(VT, T' E S) gf('rX) = gf(TtX), 

then whenever x is an atom of/hz, so are all vx, T E S (x E X). 

Proof: For each A C X we have 

#(A)= / vE(A[ f ) ( y )du (y )=  f z  ( J r  #y(A)du~(y)) dr ( z )  

and the uniqueness of dis integrat ion yields the result; (ii) follows similarly. 1 

LEMMA 5: Under the above assumptions, suppose that there exists a set  B C 

Y, u(B) > 0 such that the corresponding conditional measures #y, y E B on 

f - t ( y )  are purely atomic with k atoms. Assume that the conditional measures 

fiz, z E Z are also discrete. Then there exists a set C C Z, 7(C)  > 0 such t ha t  

B C g-X(C)  and, i f z  E C, then f~z on (g o f ) - l ( z )  has at least k atoms. 
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Proof'. Suppose that  x E X, z E Z. From Lemma 4 it follows that 

pu({x}) dye(y). ~z({X}) = -~(~) 

But x belongs to a unique fiber f - l ( yo ) ,  so 

~ ( ( x } )  = , ~o ( { X } ) '~ ( {yo} )  

and, directly from this, 

/5~({x}) > 0 iffp~o({X}) > 0 and v~({yo}) > 0. 

Consequently, if x is an atom of fiz then all atoms of #yo will be atoms of/Sz. 

It is clear that  # ( f - l ( B ) )  > 0, whence there exists a set C c Z, "~(C) > 0 

such that  f ~ ( f - l ( B ) )  > 0 for each z E C. For such z, fi~ is purely atomic, so 

there exists x E f - l ( B )  such that fi~({x}) > 0. Now, all atoms of #yo, where 

x E f - 1  (Yo), must be atoms of fiz. | 

THEOREM 2: If  the spectrum of T on A(P) is not simple then its maximal 

spectral multiplicity on L2(A(P) ) is equal to infinity. 

Proof'. We will first consider the case where the conditional 

measures Vm('[A)[Am(p) are discrete (for all m) and for some m _> 1 on Q(m)(p), 

Vm('iA)iA.~(p) is concentrated on qm! points (with q _> 2). We will show that  

then, on Q(2m)(7)) ' a number t with t >_ q2 is an essential value of the multiplicity 

function. 

Consider 

( T 2 m  a ~ w-X~ (3" x a(m)) v2 , 2~j  T, ~(m) • (T,,~(m) �9 o(~)), 
a(2m) 

where Pm xp,~ (Zl ,  . . . , Zm, Zm+l ,  . �9 �9 Z2m) ---- ( Z l .  �9 �9 Zm, Zrn-bl... Z2m). F i r s t  n o t i c e  

that  for B1, B2 C T m, 

cr2m(B1 x B~) = am(B1)am(B2) 

= ~ v m ( U l i A 1 ) d ~  vm(U2[A2)  d~ (A2) 

= fT • vm(Bll~l)Vm(B2l~2) a(a (m) x ~(~))(~1, ~2), 
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whence the corresponding conditional measures ~m(.l(Ab A2)) of the disintegra- 

tion of a2m with respect to a(m) x a(m) are equal to v,~(.IA1 ) x Vm('lA2). 

Consider the sets 

A~ m) ~ A ~-+ F(A) = { ( z l , . . . , z m )  e ~ :  (31 < i < m)(3(z~, . . . ,z~) e ~ )  

I ! zi = zi and ( z l , . . .  , z ' )  is an atom of vm('lA)lAm(p)}. 

We have crm(F(A)) = O. Consequently, given 5 > 0 we can find a set F (e) C 

which is a measurable union of the sets F(A) and for which 0 < am(F (~)) < 5. 
(Indeed, let T~n = {R 0) . . . .  , R (") } be an increasing sequence of finite partitions 

tending to the point partition, set 

F(R(O)= U F(A); 

oo ~(i~ ~ ). we have {A} = N,~=I R ( ~ ) ,  where A E ~ , moreover the map 

is measurable and hence we can find a A such that  this map (depending on n 

and i) is continuous at A for all n _> 1 and 1 < i _< n; for such a A, given 

> 0, all atoms of vm(.p~')lA~W), where [A - A' I < ~ must be within e with the 

atoms of Vm('lA)lAm(~); since (R~'~))n>l forms a decreasing sequence of sets, 

F(A) --- N~=I F(R(i"~)) and am(F(A)) = 0, our claim follows.) 

Given a natural number k > 1 define 

1 
Gk = {A E A~m): minimal measure of the atoms of vm('lA)lA,~(7:,) is at least ~}. 

We have that  the sequence (Gk) is an increasing sequence of measurable sets and 

[.Jk~=l Gk = A ('~) A ~(AmCP)).  Hence, there exists k0 such that  

1 o- { ~ - l t A ( m )  
am(p;2(ako)) > 2 

If B C ~ is measurable, 

Jk~ U supp(vm('l~)) 
~EG~ o 

(the support is meant in Am(P)) and 

a('~)({~ e ~ ( A m ( P ) ) :  supp(vm(.IA)) n B # O}) >__ r m) m~(Am(P) ) ) ,  
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then 

am(B n Jko) -- .~ vm(B n Jko I A) da(m)(A) > ~Ia(m)(A(m) A pm(Am(T~) ) ) -ko  ~ q 
= ~--oam(pT.'(n~m)n~(Am(P)))). 

Therefore, if we have 6 = 5(r ko) small enough, then we can find a set C1 of 

positive am-measure consisting of a union of suppvm(.I A) for A belonging to a 

subset of Gko such that if we let C2 = UxEs supp('IA), F(~) = F(S) then C1 and 

C2 (and their p-m-images) are disjoint. If (z~0, . . . ,  z~ )) E Ci, i = 1, 2 then this 

point must be an atom of Vm(.IAi) (Ai = pm(z~O,..., z~))) and consequently 

z(2, 

is an atom of Vm(.IA1) x Vm(.IA2). Now, by the definition of Ci, i = 1,2, 

Lemma 4(ii), Lemma 5 and (10), it follows that all permutations of the 2m 

coordinates give us pairwise different new atoms; (and since the number of 

obvious atoms is (qm!) 2) we conclude that the number of atoms is at least 

(qm')2"( 2m ) 

In order to complete the proof of Theorem 2 it is enough to show that  

or(m ) if the maximal spectral types Ip~(A~(~,)) 

(14) are not disjoint then the multiplicity 
function M = M(A(P))  is not bounded. 

We will first show that for each ml,  m2 E N 

(15) a(ml)[ - a (m2) ~(ml+m2)l 
pro1 (A,~I(T~)) $ [p~2(A,,~2(7)) ) << v Ip,,~l+,~2(A,~1+,~2(T~)). 

To this end consider 

(vm~+m~ -- ~ P'~__~P'~ (,r X,r,a(m~)X a(m~)) p~, (T,a(m~+m~)). 
, ~Jm i -~-m2 ) 

Put 

aml+m2(') = fTxT~'m'm~('l(Al'A2))da(ml)(A1)da(m2)(A2)' 

where as before ~m~,m~('l(A1, A2)) = vm~ (.IA1) x Vm~('lA2), and let 
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By Lemma 4(i), 

,~+~( '1~)  = f /]~, (1~) • ,~(1~)dp((~ l ,  ~)IA). 
J{ (A1 ,A2)ET2: A1A2=~} 

In view of Lemma 3, all we need to show is that  

~(~-:~, (A~I (~)) • ~-Z/~(A~(~'))) c pml+~(A~,+~(~))  

(here ~ is defined for/] = a ('~') , p = a(m~)). Assume that  A ~ ~ ( ~ - ~  (Am1 (P)) • 

~'~(A.~(P))) ,  that  is 

p(p-~(Am~(P)) • pm--'-~(Am2(P))IA) > O. 

We have to show that  u,cl+m2(Aml+m2(P)[A) > 0. But by (10) it is sufficient to 

get that  

Uml+m2(Aml(P) • Am2(P)I A) > 0. 

Now, 

um~+m;(dm,(P) • Am2(P)IA) 

= f urn, (Am, (~)1~1) • "m= (Am~(P)IA2) dp((A1, ~2)1~) 
J{ (A1 ,A2)E3"2: )~1A2=~} 

>_ 
J{(A1,A2)Ep-~I (Am1 (T')) xp~'~2 (Am2 (P)): A,A2=A} 

urn1 (A,~I (P)IA1) x um~ (dm2(7))lA2)dp((A1, A2)IA) 

-- f urn1 (Am~(P)IA1) • Um~(Am2(V)lA2) dp((Ab A2)IA) 
(Am 1 (T~)) xP~-22 (A~ 2 (P)) 

> 0 .  

The proof of (15) is now complete. 

Assume that  there exist 1 _< kl < k2 and a nonzero finite measure u on T such 

that  

/] ((o'(k~)l~(A~,(..p)), i = 1,2. 

Given a natural  number n _> 1, consider Q(nk~). The maximal spectral type on 

that  space is equal to o'(nkl)lp'-'~ 1 (A~k 1 (p)) and moreover, by (15), we have u (~) << 

We also have /](n--l) ~ 0 "((n-1)kl)  . . . . . . . .  SO by o'(nkl),pnkl (A.k 1 (T~)) " P(.-1)l* 1 [~(,~-l)kl ~ ' j ]  

the same argument 

_((~-l)k~+k2) ~ . .  
/](n) << cJ p(~_l)k1+k 21,i(n_l)kl+~ 2(T~)); 
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if n is big enough this argument persists and 

u(~) << a((n-2)kl +2k~) ]P(~-~-~ +~2 (A(~-2)~I +2~2 (P))" 

We conclude that the supremum of numbers tn such that for certain j l , . - .  , j r .  

we have 

u (n) << maximal spectral type of A(P) on 7-/(cJ~)(P) 

is equal to infinity and (14) easily follows. | 

4. On  T h o u v e n o t ' s  p r o b l e m  in e rgodic  t h e o r y  

We now consider Thouvenot's problem (cf. Introduction). Let B be a Banach 

space and T an isometry on it. If S C B then by Z(S)  we mean 

Z(S)  = span{fTi: f e S, i e Z}. 

The proofs of the following two lemmas are similar to the proofs of the 

corresponding results from [7] (see also [3]). 

LEMMA 6: 

with 

Bn C Bn+l 

Assume moreover that 

(3N > 1)(Vn _> 1 ) ( 3 f ~ ) , . . . ,  I(N ~)) 

Assume that ( en)n>_l is a sequence of closed T-invariant subspaces 

and U B~ = B. 
n>_l 

B~ = Z({f~ n) . . . .  , f(~)}). | 

Then { ( f l , . - . ,  fN) e BN: Z ( ( f l , . . . ,  fN})  = B}  is a residual subset o[ B N. 

LEMMA 7: Let T: (X, B, #) -----* (X, B, p) be an ergodic automorphism of a 

standard Borel space. Suppose that there exists a sequence (H~)~>I C L 2 ( X ,  #) 

of T-invariant subspaces such that 

(i) Hn C H~+I, n ~ 1, 

(ii) (3N ~ 1)(Yn _> l)(3f~ ") . . . .  , I(N n) e L2(X, .)) 

(iii) 

(iv) 

Then, for each 1 < p < +c~ the LP-multiplicity of T is at most N.  

s,, = 

(in L'(X,,)), 

(V1 < p < +oc) the L 2- and LP-norms are equivalent on H~, n >_ 1, 

(V1 < p < +co) Un>l Hn is LP-dense in LP(X,#) .  
| 
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Example 2: Let T: (X, B, #) ) (X, B, #) be an ergodic automorphism with 

discrete spectrum; hence X can be assumed to be a compact metric abelian 

group and T x  = x + xo with {nx0: n E Z} = X; # is Haar measure on X. Then 

= { ~ l , X 2 , . . . }  

is an orthonormal basis of L2(X, #). Put Hn = span{x1, . . . ,  Xn}, n _> 1. Hence 

Hn is of finite dimension (so all the norms are equivalent) and T restricted to Hn 

has simple L2-spectrum. Trigonometric polynomials are dense in C(X), hence in 

every LP(X, p), p > 1 and all assumptions of Lemma 7 are satisfied. Therefore, 

in every L p (1 _< p < +c~) the multiplicity is equal to one. 

Let T be a Gaussian automorphism. If we put 

H~ = 7-/(1) ~ ' ' "  (~ 7-/(n), n > 1, 

then, as already noticed in [7], (i), (iii), (iv) hold. 

PROPOSITION 4: I[7) is a compact subgroup in C(TITI (1)) and ,4(7 )) is the cor- 

responding factor, then for all 1 < p < +oc the multiplicities in a11 LP(A(P),  #) 

are the same. 

Proo[: We have L2(~4(7)),#) -- (~nCC__07-/(n)(7)), where on each T/!n)(T ~) the 

LP-norms are equivalent. Put  

Hn(7)) = ~(1)(7)) 0 . ' .  G 7-l('~)(P). 

We obtain that  (i) and (iii) of Lemma 7 are satisfied. Suppose that  f E 

LP(A(7)),p) and e > 0. Then there exist n _> 1 and f~ E H~ such that  

I l l  - f~ II ~ < ~. M o r e o v e r  

l lE(f lA(7)))  - E(AIA(7)))[ILp < Ilf - AIILp, 

so c o n s e q u e n t l y  I I f  - E(f~IA(7)))IILp < x a n d ,  since E(.f, IA(7))) �9 Hn(7)) ( s ince  

f~ �9 Hn, its conditional expectation in L 2 belongs to Ha (7))), also (iv) is satisfied. 

In view of Theorem 2 (and Lemma 6), on L2(A(7~), #) either 

(16) the multiplicity on Hn(P) grows to infinity when n grows to infinity 

o r  

(17) on each Hn (:P) the spectrum is simple. 
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In the first case, we have a natural projection (1 < p < 2) 

LP(A(7)),,) % Hn(P) 

(L p acts on Lq as (Lq) *, hence LP(A(P))  can be considered as a family of 

functionals on Hn(P))  which commutes with the corresponding .:~ctions of T. 

Therefore the multiplicity must be infinity. 

In case of (17) (p > 2), in view of Lemma 7, we conclude that the L p- 

multiplicity is equal to one. | 

REMARK 3: All the proofs calculating LP-mutiplicity (see [5], [6], [7] and the ex- 

amples in this paper) are based on the existence of a sequence of special subspaces. 

We state as a question whether for each ergodic automorphism T there exists a 

non-zero T-invariant subspace of L2(X, I.t) such that all LP-norms (1 < p < co) 

are equivalent on it. 

5. F ina l  r e m a r k s  

5.1 ISOMORPHISM OF T AND T -1 .  In [4], the problem of isomorphism 

between T and its inverse has been considered. This problem is related to the 

problem of representation of a given T as the composition of a finite number of 

involutions (see [2]). For example, T and T -1 are isomorphic via S satisfying 

S 2 --Id iff T = $1S2, where both $1 and $2 are involutions. This property is 

stable under a passage to certain factors. Namely, if 7) c WC(T) is compact 

then A = A(7)) is also the composition of two involutions (since A(7)) is simply 

S-invariant; indeed, S V  = V - 1 S  for each V C 7 ) because V -- limt__.~ T'U). 

If T: (X, B, #) ---* (X, B, #) is a Gaussian automorphism then it is always 

isomorphic to its inverse via an involution (indeed, take I: •z , Rz, 

• ( . . . , X - - 2 , X - - I , X 0 , X l , X 2 , . . . )  = ( . . . , X 2 , X l ,  X0, X _ I , X _ 2 , . . . ) ,  

then I T  = T - 1 I  and since the correlation matrix is symmetric, I preserves the 

Gauss measure p). 

PROPOSITION 5: I f  7 ) is a compact subgroup of C(T]']-/(1)) then .4(7)) is 

isomorphic to its inverse by an involution. 

Proof." Let I: Q(1) ~ Q(I), ( I f ) ( z )  -- f(~).  Since a is symmetric, I is unitary 

and moreover 12 ---Id. Furthermore, I V  = V - I I .  By Proposition 1, I has a 



Vol. 98, 1997 GAUSSIAN DYNAMICAL SYSTEMS 327 

unique extension to I:  (X ,B ,# )  ----+ (X,B,#) with 12 = Id  and IT  = T-1I .  

It  remains to show that  A(P)  is I-invariant. This is equivalent to saying that  

Ig = g - l I  for each g �9 P.  We have Igl = 1 and g(~) = g(z) so the result easily 

follows. | 

5.2 EMBEDDABILITY IN MEASURABLE FLOWS. Let us start  with a general 

remark: if T is weakly mixing, T -- T1, where (Tt)te~ is a measurable flow, then 

for no Tt, t r 0 the closure of {Tt~: n �9 Z} is compact. 

Let T: (X, B, p) ~ (X, B, #) be a Gaussian automorphism and P a compact 

subgroup of C(TIT-t(1)). Since 

1~ ~ s H e i~(') E L2(T,a)  

is continuous, the corresponding embedding ]~ ~ C(T) is also continuous 

(e i~(') extends to an element of C(T)), so T is embeddable in a measurable flow. 

In order to show that  also A(P)  enjoys this property it remains to notice that  

e is() does not act as the identity on A(P) .  Because of (1) this is equivalent to 

saying that  e i~(') r P.  An easy application of the above remark completes the 

proof. 

5.3 A QUESTION. It  follows from this paper that  the compact first chaos 

factors share the following basic properties of Gaussian automorphisms: 

(a) group property of the spectrum, i.e. p �9 p << p, where p is the maximal  

spectral type, 

(b) the maximal spectral multiplicity is either 1 or infinity, 

(c) they are compositions of two involutions, 

(d) they are embeddable in measurable flows. 

Can there exist a factor of a Gaussian automorphism without one of these 

properties? 
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